

HUMIDITY/TEMPERATURE/DOOR AND WINDOW/ACCELERATION SENSOR

SMART-HS0101

USER MANUAL

DOCUMENT REVISION	FIRMWARE VERSION
02	1.3EU

CONTENTS

INTRODUCTION	3
1 Device purpose AND OPERATION PRINCIPAL	4
Device purpose	4
Operation algorithm	4
Functional	5
Marking	6
2 SPECIFICATION	7
Device Specification	7
Default Device Settings	8
3 OPERATION	9
Device Appearance	9
LED IndicationS	10
Mounting recommendations	11
4 COMMUNICATION PROTOCOL	15
VEGA SMART-HS0101 transmits the following types of packets	15
VEGA SMART-HS0101 receives the following types of packets	17
5 STORAGE AND TRANSPORTATION REQUIREMENTS	19
6 CONTENT OF THE PACKAGE	20
7 WARRANTY	21

INTRODUCTION

This manual is designated for Vega Smart-HS0101 humidity/temperature/door and window/acceleration sensor (hereinafter – device, sensor) manufactured by Vega-Absolute OOO and provides information on powering and activation procedure, control commands and functions of the device.

This manual is targeted at specialists familiar with installation work fundamentals for electronic and electrical equipment.

Vega-Absolute OOO reserves the right to make changes to the manual related to the improvement of equipment and software, as well as to eliminate typos and inaccuracies, without prior notice.

1 DEVICE PURPOSE AND OPERATION PRINCIPAL

DEVICE PURPOSE

Vega Smart-HS0101 sensor designed for distance control both opening and closing different doors and windows, for determine an angle of deviation from the vertical of some objects or for fix a move starting and also for measurement of humidity and temperature parameters including control of coming out the specified range of these parameters. All controlled parameters may be a source of triggering with initiate of alarm communication session and transmitting the message with alarm flag.

The sensor powered by a CR123A 1400 mAh replaceable battery.

The sensor configuring via USB with special software «Vega LoRaWAN Configurator».

OPERATION ALGORITHM

Vega Smart-HS0101 operates in modes listed below:

"Storage" – is a mode for storing and transporting. In this mode the device does not communicate regularly with the network.

"Active" – is a main mode of device operation.

Initially, the device is not connected to power, because a plastic plug is installed between the battery contact and the device contact, which must be removed before putting the sensor into operation.

Vega Smart-HS0101 supports two activation methods in the LoRaWAN® network - ABP and OTAA. Select one of the methods via the "Vega LoRaWAN Configurator" application (see "User Manual" on the program).

ABP method. After pressing the start button, the device immediately starts working in the "Active" mode.

OTAA method. After pressing the start button, the device makes three attempts to connect to the network within the set frequency plan. After the activation in the LoRaWAN® network is confirmed, the device sends a signal (LED flashing for 5 seconds) and switches to the "Active" mode. If all attempts fail, the counter will continue to accumulate data and will attempt to connect to the network every 6 hours.

Hold the start button pressed (min. 5 seconds) to switch the device from the "Active" mode back to the "Storage" mode.

The readings store in the device memory with a configurable period from 5 minutes to 24 hours. The stored readings transmit during the next communication session with the LoRaWAN® network.

Data collection period when measurements are out of specified temperature range set independently and may be equal from 5 minutes to 24 hours.

The adjustable data transfer period can be from 5 minutes to 24 hours. Data transferring in random point in time during set period. At the next communication session, the device starts sending accumulated packets with readings, from the earliest to the latest.

When measurements are out of specified temperature/humidity range the communication period still the same if parameter "Immediately send data when temperature is out of range" is not active. If that parameter is active then the alarm message will forming and sending during 2 minutes after the moment of temperature/humidity measurements are out of specified range. Every following message, which will form according to the data collection period, will have sent according to the communication period.

With the "Confirmed uplinks" option turned on, the device will send the next packet only after receiving a confirmation of the delivery of the previous one. If such confirmation have not received after the fulfilled in the settings uplink number of transmission, device completes the communication session until the next one according to the schedule. In this case, the device continues to collect data according to the data collection period and store it in memory. Non-transmitted packets remain in the device memory until the next communication session.

With the "Confirmed uplinks" option turned off, the device just sends all accumulated packets to the network in order from the earliest to the latest. There are no checks of package delivery in this mode. There are no non-transmitted messages in the device memory.

The internal clock is set automatically when device connected to the "Vega LoRaWAN Configurator" via USB, also adjustable via LoRaWAN[®].

FUNCTIONAL

Vega Smart-HS0101 sensor is class A device (LoRaWAN® classification) and has the following features:

- Frequency plans RU868, EU868, KZ865
- The ability to set custom frequency plan
- ADR support (Adaptive Data Rate)
- Sending of confirmed packets (configurable)
- OTAA or ABP activation (configurable)
- Communication period every 5, 15, 30 minutes, 1, 6, 12, 24 hours (configurable)
- Extra communication in case of Hall sensor triggering
- Extra communication in case of accelerometer triggering

- Extra communication in case of humidity value come out of specified range
- Extra communication in case of temperature value come out of specified range
- Temperature and humidity measurements
- Battery charge measurement (%)
- Sensitivity: up to -138dBm
- Saving collected data in "black box" for the next transmitting

MARKING

Device marked with sticker that contains the following information:

- Device model:
- DevEUI:
- Month and year of manufacture;
- Certification marks.

Sticker located in three places – on device case, in factory certificate and on the packing box.

Besides, there is an additional sticker located on the packing box and contains:

- Information about firmware version;
- QR code containing device activation keys in the LoRaWAN® network, production date and other identifiers.

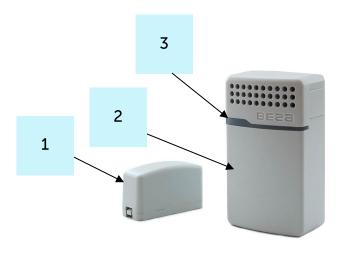
2 SPECIFICATION

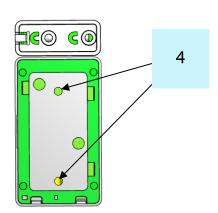
DEVICE SPECIFICATION

MAIN			
USB-port	micro-USB, type B		
Operating temperatures	-40+85 °C		
Built-in temperature sensor	yes		
Built-in humidity sensor	yes		
LORAWA	N _®		
LoRaWAN® class	Α		
Quantity of LoRa channels	16		
Frequency plans supported by default	RU868, EU868, KZ865, custom (EU868 based)		
Frequency plans available as order option	IN865, AS923, AU915, KR920, US915		
Activation type	ABP or OTAA		
Communication period	5, 15, 30 minutes, 1, 6, 12 or 24 hours		
Data collection period	5, 15, 30 minutes, 1, 6, 12 or 24 hours		
Memory amount for storing packets	200 packets		
Antenna	internal		
Sensitivity	-138 dBm		
Radio coverage in restrained urban conditions	max 5 km		
Radio coverage within line of sight	max 15 km		
Transmitter power by default	25 mW (configurable)		
POWER	R		
Replaceable battery	CR123A 3V, 1400 mAh		
Estimated number of packets sent by the device, not less	15 000		
CASE			
Device dimensions 63 x 36 x 21 mm			
Magnetic part dimensions	15 x 36 x 21 mm		
Ingress protection rating	IP20		
PACKAGE			
Dimensions	80 x 40 x 25 mm		
Weight	0,057 kg		

DEFAULT DEVICE SETTINGS

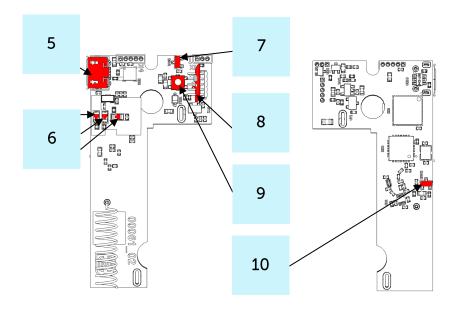
PARAMETER	VALUE
Frequency plan	RU868
Activation type	OTAA
Adaptive Data Rate	ON
Confirmed Uplinks	OFF
Rx 1 Delay	1 second
Join Accept Delay	5 seconds
Uplink number of transmissions	1
Data rate	DR0
Power	14 dBm
Communication period	24 hours
Data collection period	24 hours
Time zone	UTC +00:00


For changing the device settings, you need to connect to it with "Vega LoRaWAN Configurator" application. You can download app on the iotvega.com site in SOFT section as well as User Manual for configurator. <u>Go to the app page</u>.



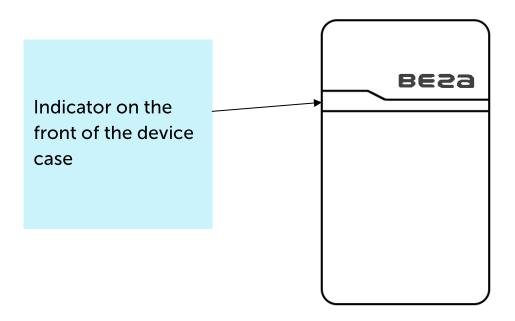
3 OPERATION

DEVICE APPEARANCE


Vega Smart-HS0101 is represented in a compact package with a triple color LED indicator on the front side.

- 1 magnetic part
- 2 main part
- 3 LED indicator
- 4 holes for screws

Service elements are located inside the case on the board: an USB interface and a start button. Two Hall sensors react to the presentation of the magnet above and to the left of the device (when viewed from the front side).



- 5 USB-port
- 6 LED indicator
- 7 Hall sensor 1
- 8 humidity sensor
- 9 launch button
- 10 Hall sensor 2

LED INDICATIONS

A triple color indicator is located on the front of the sensor case and it informs a user about the device state.

INDICATOR SIGNAL		MEANING	
шшш	A series of short blue flashes	Linking to the network in progress	
	One long blue flash	The device connected to the network and in «Active» mode	
	One long red flash	Linking to the network is unsuccessful or the device switched to the «Storage» mode	
	One short blue flash	Data transmitting in progress	
	One green flash every 10 seconds	Device in «Active» mode	
	One red flash every 10 seconds	Battery charge is lower than 10 %	

In case of connection attempt fail, the device will continue to accumulate data and will attempt to connect to the network every 6 hours

MOUNTING RECOMMENDATIONS

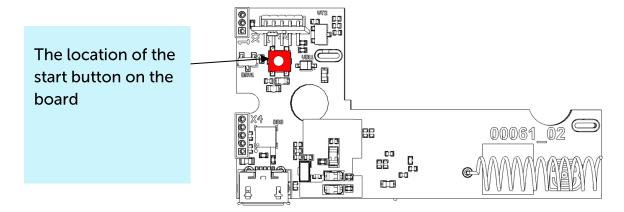
To provide the stable radio between the gateway and the end device it is recommended avoiding the device installation in the places which are barriers for the radio signal getting through like a reinforced floors and walls, a basement, an underground facilities and wells, a metal case etc.

The necessary stage for the network deploying including a big quantity of end devices is a radio planning work with nature experiments.

Before starting mounting work, you must make sure that the latest firmware version is installed on the equipment

For mounting you will need:

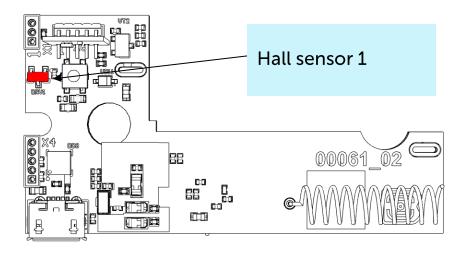
- double sided tape;
- screwdriver;
- laptop.

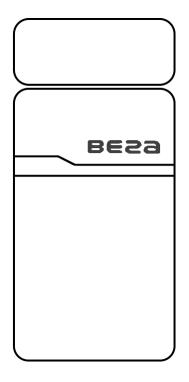


Initially, the device is not connected to power, because a plastic plug installed between the battery contact and the device contact must be removed before commissioning.

Step by step mounting be like:

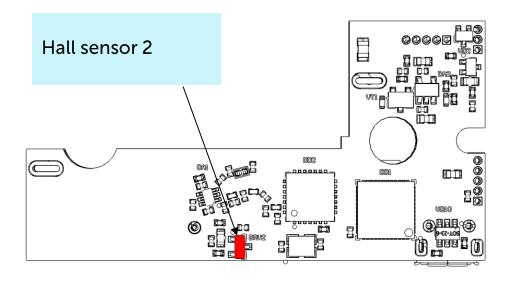
- 1. Setting the devices and connecting them to the network are usually carried out in the office (see Network Deployment Manual).
- 2. Determination of suitable places for mounting at the object with a network tester.
- 3. Remove the plastic plug between the battery and the device contact, if present, or install the battery if it has not been installed.
- 4. Device launching switching to the "Active" mode and registration in the network.

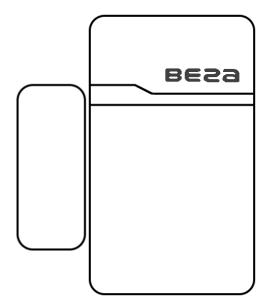



- 5. By the laptop you can make sure that the device successfully sends the data.
- 6. Assembling the device.
- 7. Fixing the device on the object. The magnetic contact sensor involves the interdependent placement of two components: the main part, which includes all the electronics, and the magnetic part. The main part must be fixed to the object using double-sided tape. The magnetic part can be fixed with self-tapping screws or double-sided tape.

Device contains two Hall sensors located in two different places on a board. That allows mounting device in two ways

1. The magnet is located above the main part. With this placement, the Hall sensor 1 responds to the movement of the magnet.





Magnet is above, Hall sensor 1 works

2. The magnet is located to the left of the main part. With this placement, the Hall sensor 2 responds to the movement of the magnet.

Magnet to the left, Hall sensor 2 works

4 COMMUNICATION PROTOCOL

This part describes the Vega Smart-HS0101 communication protocol with LoRaWAN® network.

VEGA SMART-HS0101 TRANSMITS THE FOLLOWING TYPES OF PACKETS

In fields consisting of several bytes, the little endian byte order is used

1. Packet with the current state, transmitted regularly, either by bringing or removing the magnet to LoRaWAN® port 2

Size in bytes	Field description	Data type
1 byte	Packet type 1 – current state 2 – Hall sensor 1 alarm 3 – Hall sensor 2 alarm 4 – accelerometer alarm 5 – humidity value out of range 6 – temperature value out of range	uint8
1 byte	Battery charge, %	uint8
4 bytes	Reading time for values in this packet (for packet type 1) Time of the modem at the moment of the packet transmission (for the packets type 25) (unixtime UTC)	uint32
2 bytes	Temperature in ^o C, multiplied by 10	int16
1 byte	Humidity in %	uint8
1 byte	Sensor 1 state (0 – open, 1 – close)	uint8
1 byte	Sensor 2 state (0 – open, 1 – close)	uint8
1 byte	Vertical tint angle (090)	uint8
1 byte	Humidity low threshold in %	uint8
1 byte	Humidity high threshold in %	uint8
1 byte	Temperature low threshold	uint8
1 byte	Temperature high threshold	uint8

2. Packet with time correction request, sent every seven days on LoRaWAN® port 4

Size in bytes	Field description	Data type
1 byte	Packet type, this packet == 255	uint8
4 bytes	Time of the modem at the moment of the packet transmission (unixtime UTC)	uint32

After receiving this type of package, the application can send to modem the packet with time correction.

3. Settings packet – transmitting on LoRaWAN® port 3 when settings request command received or device connected to the network

Size in bytes	Field description	Data type
1 byte	Packet type, this packet == 0	uint8
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	

VEGA SMART-HS0101 RECEIVES THE FOLLOWING TYPES OF PACKETS

1. Real-time clock adjustment – sent by application on LoRaWAN® port 4

Size in bytes	Field description	Data type
1 byte	Packet type, this packet == 255	uint8
8 bytes	The value in seconds for which you need to adjust the time. Can be positive or negative	int64

When receiving the packet the pulse counter sets its internal clock and calendar in compliance with the received packet.

2. Packet with request of settings – sent by application on LoRaWAN® port 3

Size in bytes	Field description	Data type
1 byte	Packet type, this packet == 1	uint8

Answering that packet the device sent the packet with settings.

3. Packet with settings is identical to such packet from device

Size in bytes	Field description	Data type
1 byte	Packet type, this packet == 0	uint8
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	
2 bytes	ID of parameter	uint16
1 byte	Data length (len)	uint8
len bytes	Parameter value	

The package with settings sent to the device may not contain all the settings supported by the device, but only the part that needs to be changed.

Table of ID of Vega Smart-HS0101 parameters and these possible values

The table contains values in DEC, when sending, these values must be converted to HEX

ID of	Description	Data	Possible values
parameter		length	4
4	Confirmed uplinks	1 byte	1 – confirmed 2 – unconfirmed
16	Communication period	1 byte	1 – 1 hour 2 – 6 hours 3 – 12 hours 4 – 24 hours 5 – 5 minutes 6 – 15 minutes 7 – 30 minutes
38	Send alarm message sensor 1	1 byte	1 – short (close) 2 – open 3 – short and open (close and open) 4 – disabled
39	Send alarm message sensor 2	1 byte	1 – short (close) 2 – open 3 – short and open (close and open) 4 – disabled
44	Accelerometer sensitivity	1 byte	1 – low 2 – middle 3 – high 4 – disable
49	Data collection period	1 byte	1 – 1 hour 2 – 6 hours 3 – 12 hours 4 – 24 hours 5 – 5 minutes 6 – 15 minutes 7 – 30 minutes
78	Collection period when data out of threshold	1 byte	1 – 1 hour 2 – 6 hours 3 – 12 hours 4 – 24 hours 5 – 5 minutes 6 – 15 minutes 7 – 30 minutes
79	Send alarm when data out of thresholds	1 byte	0 – off 1 – on
80	Temperature low threshold	1 byte	from -40 °C to +84 °C
81	Temperature high threshold	1 byte	from -39 °C to +85 °C
88	Humidity low threshold	1 byte	from 0 to 100%
89	Humidity low threshold	1 byte	from 0 to 100%

5 STORAGE AND TRANSPORTATION REQUIREMENTS

Vega Smart-HS0101 sensor shall be stored in the original packaging in heated room at temperatures $+5^{\circ}$ C to $+40^{\circ}$ C and relative humidity less than 85%.

The sensor shall be transported in covered freight compartments of all types at any distance at temperatures -40 $^{\circ}$ C to +85 $^{\circ}$ C.

6 CONTENT OF THE PACKAGE

The sensor is delivered complete with:

Sensor Vega Smart-HS0101 – 1 pc.

CR123A battery – 1 pc.

Factory certificate – 1 pc.

7 WARRANTY

The manufacturer guarantees that the product complies with the current technical documentation, subject to the storage, transportation and operation conditions specified in the "User Manual".

The warranty period is 36 months. The warranty does not cover batteries.

The warranty period of operation is calculated from the date of sale marked in the product factory certificate, and from the release date when such a mark is absent. During the warranty period, the manufacturer is obliged to provide repair services or replace a failed device or its components.

The manufacturer does not bear warranty obligations in the event of a product failure if:

- the product does not have a factory certificate;
- the factory certificate does not have an TCD stamp and / or there is no sticker with information about the device:
- the serial number (DevEUI, EMEI) printed on the product differs from the serial number (DevEUI, EMEI) specified in the factory certificate;
- the product has been subject to alterations in the design and / or software which are not provided for in the operational documentation;
- the product has mechanical, electrical and / or other damage and defects arising from violation of the conditions of transportation, storage and operation;
 - the product has traces of repair outside the manufacturer's service center;
- the components of the product have internal damage caused by the ingress of foreign objects / liquids and / or natural disasters (flood, fire, etc.).

The average service life of the product is 7 years.

In the event of a warranty claim, contact the service center:

119A, Bol'shevistskaya Str., Novosibirsk, 630009, Russia.

Tel.: +7 (383) 206-41-35.

e-mail: remont@vega-absolute.ru

DOCUMENT INFORMATION		
Title	Humidity/temperature/door and window/acceleration sensor Vega Smart-HS0101	
Document type	Manual – Translation from Russian	
Document number	V05-HS0101-01	
Revision and date	02 – 31 March 2022	

Revision History

Revision	Date	Name	Comments
01	01.02.2019	KEV	Document first reduction release date
02	31.03.2022	КМА	Planned revision

vega-absolute.ru

User Manual © Vega-Absolute OOO 2019-2022